
Subodh Journal of Recent Trends in Information Technology
 Volume 10, Issue 01, June 2019 | ISSN No. 0975-9875

1

Study of HDFS Architecture and Services

Khushboo Verma

Khushbooverma250186@gmail.com

ABSTRACT - In this world, different type of information is being produced every second. We need to store this huge

information so that we can use it whenever needed. HDFS is designed to store this big amount of data in number of servers. The

data is replicated and stored in number of servers. In this paper I am going to describe the architecture of HDFS and important

terms related with that.

KEYWORDS - big data; hadoop; map reduce; HDFS; namenode; datanode; secondary namenode.

INTRODUCTION

Now a days, along with structured data, an unstructured and

semi-structured data is also produced by different

applications in very less time like images, videos, text etc. in

large amount. So, this type of large data is termed as BIG

DATA[1]. The size of this big data is in terabytes[2],

petabytes and even exabytes. Our RDBMS is not sufficient to

handle this big amount of data because RDBMS can only

handle structured data. To handle or we can say to store and

process this type of data HADOOP came into the picture[1].

Hadoop is an open source framework by Apache Software

Foundation written in java language for storing and

processing big data sets. Hadoop is a combination of HDFS (

Hadoop distributed file system) and mapreduce[3].

1. WHY HADOOP NOT FOR SMALL DATA?

Small files are much smaller than HDFS data block. HDFS is

made to handle less files of large size, but it cannot work

efficiently with large number of small size files as it has to

maintain metadata of these files in namenode. So,

maintaining metadata of large number of small size file

makes namenode size big, which will slow down the

process[12].

2. HDFS ARCHITECHTRE

HDFS is a specially designed file system as its memory

blocks are 64MB of size[11] by default for storing huge data

sets with the use of cluster of commodities hardware(cheap

hardware)[8] like our PCs because hadoop needs large

number of hardware to store huge data and it can support

commodities hardware with streaming access pattern (write

ones read anywhere).Whereas mapreduce is used for

processing that stored data[8].

Five services of HDFS and their interaction with each

other

Master services

 Namenode

 Jobtracker

Secondary master service

 Secondarynamenode

Slave services

 Datanode

 Tasktracker[8]

Every master service can interact with each other and every

slave service also can interact with each other.Every master

service can interact with its corresponding slave service like

name node can interact with data node and job tracker can

interact with task tracker but any master node cannot interact

with slave node of other master node.

Fig 1: Master / Slave architecture[6]

3. WORKING

Assumption

A client has data of 200 MB of size in his local machine (we

are taking small data size for our convenience). The file name

is file.txt.

In HDFS we have number of commodities hardware also

known as data nodes of memory block size of 64 MB by

default (can change it into 128 MB also according to our

data size) to store this 200MB data file. So the client has to

break this file into three input splits of 64MB size and one

input splits of 8MB size. These four input splits are going to

store in different data nodes.

The four input splits will be-

 w.txt of64MB

 x.txt of64MB

 y.txt of64MB

 z.txt of8MB

mailto:Khushbooverma250186@gmail.com

Subodh Journal of Recent Trends in Information Technology
 Volume 10, Issue 01, June 2019 | ISSN No. 0975-9875

2

This HDFS architecture is master-slave architecture [8].

a. NameNode

Namenode is a master node which keeps the metadata of

stored files[4] like file name (including path), input splits,

name of data node where input splits are stored, size, owner,

group, permission, block size etc.

b. Data node

Data node is a slave node which actually stores the

data[8].Client send request to name node for storing his data

in data nodes and in response name node will send data nodes

details in which client can store his data input splits[4].

Let us assume the four input splits will be stored in data node

number 1, 3, 5, 7. So, this information of data node number

and its stored input split name will be send to the name node

from client and with this information name node create the

metadata and store it in its RAM.

c. Metadata
 file name –file.txt

 File size – 200MB

 Four inputsplits

1. w.txt in data node1

2. x.txt in data node3

3. y.txt in data node5

4. z.txt in data node7

(I have not written all the metadata here)

d. Namenode failure

If namenode get failed due to any reason our metadata

get lost and data nodes will become inaccessible

because information of data node and its stored input

splits is stored in metadata only.

Fig 2: HDFS architecture [7]

4. FAILURE AND THE WAY TO HANDLE THEM

a. Data node failure

As we are using cheap hardware for storing our data, failure

can take place due to any reason and our data get lost.

b. Solution

Name node maintain two more copies of every input split in

different data nodes and also maintain this information in its

metadata. For example – w.txt in datanode 1, 5, and 9 etc.So

in total name node maintain three copies of everyinput split

in different data nodes and maintain information about that

to overcome failureofdata node. In HDFS, every datanode

sends heartbeat to node. In HDFS, every data node sends

heartbeat to show that it is alive and block report to show all

of the blocks it is handling in every 10 minutes. If namenode

does not receives heartbeat from any datanode, then it shows

that this datanode is dead. Now namenode copy all of the

blocks that node is handling to some other datanode and three

copies of data is maintained[5].

Namenode metadata maintain two files :-

 fsimage

 editlog

fsimage is a screenshot of edited metadata at that point of

time. It is an image file. Whereas editlog is a log file which

contain currently edited metadata (adding, deleting, updating

etc.). HDFS does not made changes directly to the fsimage

but it make changes to the editlog and take snapshot of edited

data as fsimage.

There is a secondary namenode in another master machine.

Secondary namenode connect itself tothe name node at

regular interval of time[9]. Secondary name node take current

editlog from namenode and using this log file it create

fsimage and make editlog empty. Now it saves this image file

in its memory and also give copy of fsimage to namenode.

Again secondary namenode reconnects with namenode after

sometime and again takes new editlog and merge it with last

fsimage to create new fsimage anderase everything from

editlog to make it short in size. This process goes on and

seconday namenode has collection of old fsimages and newly

created also.

These images are known as checkpoints[10].Now if

namenode crashed, then namenode restarted and rebuilt the

metadata using fsimages from secondaynamenode.

6. CONCLUSION

In this review paper, an overview of big data is provided

along with the process of how the data is stored in HDFS.

This paper is also describing why hadoop is not suitable for

small datasets. Five services of HDFS are also described

here. Failure of name node and data node with it solution is

also described.

7. REFERENCES

[1] Roshani K. Chaudhari, Prof. D. M. Dakhane, “contribution of

hadoop to big data problems”, International Journal of Advanced

Research in Computer Science and Software Engineering, vol 5

issue 4 (2015).

[2] D. P. Acharjya, Kauser Ahmed P, “A Survey on Big Data

Analytics: Challenges”, Open Research Issues and Tools,

International Journal ofAdvanced Computer Science and

Applications, Vol. 7 No. 2 (2016).

Subodh Journal of Recent Trends in Information Technology
 Volume 10, Issue 01, June 2019 | ISSN No. 0975-9875

3

[3] Himani Saraswat, Neeta Sharma, Abhishek Rai, “Enhancing the

Traditional File System to HDFS: A Big Data Solution”,

International Journal ofComputer Applications (0975 – 8887),

Volume 167 – No.9, (2017).

[4] Bhawana Sahare , Ankit Naik , Kavita Patel, “Study of

HADOOP”, International Journal of Computer Science Trends and

Technology, Vol 2 Issue 6,(2014).

[5] T. Cowsalya, S.R. Mugunthan, “Hadoop architecture and fault

tolerance based hadoop clusters in geographically distributed data

center”, ARPN Journal of Engineering and Applied Sciences, VOL.

10, NO. 7,(2015).

[6]https://www.guru99.com/learn-hadoop-in-10-minutes.html

[7] https://mindmajix.com/hadoop-tutorial

[8] Devateja G , Kashyap P V B , Suraj C, Harshavardhan C ,

Impana Appaji, “A Study: Hadoop Framework”, International

Journal ofAdvance Engineering and Research Development, Vol 3

Issue 2, (2016).

[9] V. S. Karwande , Dr. S. S.Lomte, Prof. R. A. Auti, “The Data

Recovery File System for Hadoop Cluster -Review Paper”,

International Journal of Computer Science and Information

Technologies, Vol. 6 (1) , (2015).

[10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert

Chansler, “The Hadoop Distributed File System”, IEEE,(2010).

[11] Bharti Gupta, Rajender Nath, Girdhar Gopal, Kartik,”An

Efficient Approach for Storing and Accessing Small Files

with Big Data Technology”, International Journal of

Computer Applications(0975– 8887), Vol 146 – No.1,

(2016).

[12] Sachin Bendea , Rajashree Shedge, “Dealingwith Small

Files Problem in Hadoop Distributed File System”,

ScienceDirect/Procedia computer science79, (2016)

https://www.guru99.com/learn-hadoop-in-10-minutes.html
https://www.guru99.com/learn-hadoop-in-10-minutes.html
https://mindmajix.com/hadoop-tutorial

